The neglected art of Fixed Point arithmetic

Jetro Lauha
Seminar Presentation

Assembly 2006, 3rd - 6th August 2006
(Revised: September 13, 2006)

2019-08, small note:
Many of the statements in this presentation do not hold true for “today’s hardware”. (floating point support is now common in mobile and even IoT CPUs).
Contents

- Motivation
- Introduction
- Typically needed functions
- Caveats and tricks
- Tips for making a fixed point library
Motivation

• Man sent himself to moon, and space probes even beyond that. Do you think the hardware used to accomplish those feats had fancy FPU to do all the calculations?

• They used RCA 1802.
 – Processing power equals roughly 6502 or 6510, used in Apple II and Commodore 64.
Motivation

• But it's a lot of work.
 – 30% of the Apollo software development effort was spent on scaling. [Krl64]

• So they eventually switched to floating point when hardware got better.
Motivation

• So why am I talking about this?
 – Well, at least it's COOL, in retro-way:
 This is how demo & game coders did their 3D stuff
 15 years ago and made some pretty cool stuff even
 with the minuscule CPU power.

• But does that matter anymore - except if you
 are going to take part in the old school demo
 competition with some retro stuff?
Motivation

• There's still plenty of platforms where using only fixed point (integer) calculations is still very relevant.
 – Mobile devices (Typical: ARM CPU, no FPU)
 • Almost all mobile phones (J2ME or native code)
 • Handheld consoles (Gameboy, Nintendo DS)
 – DSP Programming
 • There's both fixed & floating point DSPs
Motivation

...continued...

- OpenGL ES is the standard for embedded 3D.
 - Profiles for both fixed point and floating point, but often only Common-Lite profile is provided (no floating point).
- Fixed point is often still a bit faster on desktop than floating point.
- Stable calculations across platforms
 - Floating point calculations are prone to slight differences based on compiler, CPU and other dependencies.
Introduction

• Basics
• Notation
• Range and precision
• Conversion
• Basic operations: + - * /
Introduction: Basics

• What are the fixed point numbers in “layman's” terms?
 - Scale all real numbers by a constant factor, such as 65536, round to nearest integer and store the numbers as integers.
 - This allows you to represent an evenly distributed subset of real numbers roughly from -32768 to 32767 (with 32-bit signed integers and factor of 65536).
Introduction: Basics

- More exactly, you are dividing your range of values to two parts - the integer part and fractional part.

8-bit example:

That's the “fixed point!”
Introduction: Notation

- Notations:
 - $M.N$, e.g. 16.16
 - QN (Q factor), e.g. Q16

- M is number of integer bits and N is number of fractional bits.
Introduction: Range and precision

- **Range**: defined by the integer (upper) part.
 - 16.16 (signed): range is [-32768, 32767]

- **Precision**: smallest difference between two successive numbers is $1/2^N$.
 - 16.16: $1/65536$ (~0.000015258789)

8-bit example:

<table>
<thead>
<tr>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>2^-1</th>
<th>2^-2</th>
<th>2^-3</th>
<th>2^-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
<td>1/16</td>
</tr>
</tbody>
</table>

4.4 Range: [-8, 7] (if signed)
Precision: 1/16 (0.0625)
Introduction:
Conversion

- Conversion from real to fixed point number
 - Multiply by 2^N and round to nearest integer
 - $(\text{int})(R \times (1<<N) + (R)\geq0 \ ? \ 0.5 \ : \ -0.5))$

- Conversion from fixed point to real number
 - Cast to real and divide by 2^N
 - $(\text{float})F / (1<<N)$

- Conversion from/to integers (lossless)
 - Shift N bits up or down (scaling by 2^N)
 - $F = I<<N$, $I = F>>N$
Introduction: Basic operations

- Addition (+) and subtraction (-)
 - Same as adding and subtracting integers

- Multiplication (a * b)
 - Multiply as integers and divide result by 2^N.
 - $((a * b) \gg N)$
 - That overflows very easily, as both a and b are fixed point numbers!
 - If both a and b are 2.0 (131072) as 16.16 fixed point
 \[
 (a \times b) = 17179869184 - 32 \text{ bits isn't enough!}
 \]
Introduction: Basic operations

• For multiplication, the intermediate result from \(a \times b \) is in \(2M:2N \) (Q2N) format

 – Store intermediate value in double sized integer format. That is, for 32-bit 16.16 fixed point numbers, you need a 64-bit integer to store the 32.32 (Q32) intermediate result.

• \((\text{int})(((\text{INT64})a \times (\text{INT64})b) >> N)\)

<table>
<thead>
<tr>
<th>Platform</th>
<th>64-bit Integer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSVC</td>
<td>__int64</td>
</tr>
<tr>
<td>GCC</td>
<td>signed long long</td>
</tr>
<tr>
<td>Java</td>
<td>long</td>
</tr>
</tbody>
</table>
Introduction: Basic operations

- Division \(a / b \)
 - Multiply \(a \) by \(2^N \) and divide by \(b \) (as integers).
 - \((((a \ll N) / b) \)
 - Again, intermediate result is prone to overflowing, so the correct way for 16.16 is:
 - \((((\text{INT64})a \ll N) / b) \)

- See references for more detailed introductory texts to fixed points. [VVB04, Str04, WikF]
Typically Needed Functions

- **Sine and cosine**: \(\sin(x), \cos(x) \)
- **Arcus tangent**: \(\text{atan2}(y, x) \)
- **Square root**: \(\sqrt{x} \)
- **Try CORDIC**
Typically Needed Functions: Sine and cosine

• Typical approach is to use a look-up table.
 – Requires memory proportional to desired accuracy
 – Requires some storage space to load table from or time for pre-calculating table on startup
 – Can interpolate between sampled values to gain some more accuracy

• Note that it's enough to calculate $\pi/4$ entries to table, rest of the samples can be mirrored and transformed from those.
Typically Needed Functions: Sine and cosine

- It's possible to find or construct less accurate approximations for functions if you need smaller code, memory usage or more speed.
 - DSP coders have some quite nice tricks. [Ben06]
- See also [Str04] for code example of how to calculate sin, cos and tan algorithmically using only a small arctan table.
Typically Needed Functions: Square root

• Several fairly good iterative algorithms exist, so I don't recommend using a look-up table.

• Can be as simple as trying out to multiply integers by themselves until you find out the closest one
 – Or binary search version of the above

• Ken Turkowski's implementation is probably the most often used one. [Tur94]
 – For your convenience, code on the next slide.
/ The definitions below yield 2 integer bits, 30 fractional bits */
#define FRACBITS 30 /* Must be even! */
#define ITERS (15 + (FRACBITS >> 1))
typedef long TFract;

TFract
FFracSqrt(TFract x)
{
 register unsigned long root, remHi, remLo, testDiv, count;

 root = 0; /* Clear root */
 remHi = 0; /* Clear high part of partial remainder */
 remLo = x; /* Get argument into low part of partial remainder */
 count = ITERS; /* Load loop counter */

 do {
 remHi = (remHi << 2) | (remLo >> 30); remLo <<= 2; /* get 2 bits of arg */
 root <<= 1; /* Get ready for the next bit in the root */
 testDiv = (root << 1) + 1; /* Test radical */
 if (remHi >= testDiv) {
 remHi -= testDiv;
 root += 1;
 }
 } while (count-- != 0);

 return(root);
}
Typically Needed Functions: Arcus tangent

• You can try some look-up table tricks, again.

• If fast and rough approximation is enough, implementation can be very simple. [Cap91]

• For accurate results, try using CORDIC (covered next).

• For my favorite approximation (for the time being), check Jim Shima's DSP Trick: Fixed-Point Atan2 With Self Normalization. [Shi99]
Typically Needed Functions: Try CORDIC

- “COordinate Rotation Digital Computer”, an algorithm to calculate hyperbolic and trigonometric functions, from 1959. [WikC]
 - Only small look-up tables, bitshifts and additions.

- Use it run-time or to pre-calculate look-up tables. (sin, cos, atan, …)

- Accurate results

- Not the fastest solution
Caveats And Tricks

- Back to range and precision
- Watch out for division by zero
- Exact results
- Dealing with problems
Caveats And Tricks: Back to range and precision

• When storing result of $a \times b$ to normal sized fixed point (integer) value

 − Possible range & precision for the original values is much more limited than the normal to prevent overflow & underflow.

 − For storing $a \times a$:

 • $\text{abs}(a) \leq \sim 181$ -- $181 \times 181 = 32761$, barely fits in signed 16.16 fixed point number.

 • $\text{abs}(a) \geq \sim 0.004$ -- $0.004 \times 0.004 = 0.000016$, truncated down to $1/65536$.
Caveats And Tricks:
Back to range and precision

- Similarly, make sure that a/b will stay in range
 - When |b| > 1.0
 - Check ranges so that result doesn't end up being 0.
 - When |b| < 1.0
 - b > 1/(2^{M-1}/a)
 - If max value for a is 32, b must be at least 0.000991821 (65/65536) so that a/b fits in 16.16 fixed point number: 32/0.000991821=~32263.
 - If b would be one less (64/65536), then a/b will be 32768, not fitting in [-32768, 32767] 16.16 fixed point value range.
Caveats And Tricks:
Watch out for division by zero

- Floating points have “Infinity Arithmetic”
 - Even result of division by zero is defined, so you simply get Inf as a result
 - Easier to go unnoticed by mistake
- Fixed point (integer) division by zero leads to interrupt or an exception is thrown
 - Typically programs just crash at this
Caveats And Tricks: Exact results

• Possible in some cases: modify division involving formulas to keep numerator and denominator separate, and try to find out final (exact) result by examining those, without doing the division. See [Eri05] for example.

• Generally speaking, it's rare and hard to take advantage of this.
Caveats And Tricks: Dealing with problems

- When troubled by overflows, underflows or accuracy problems
 - Try keeping the intermediate result(s) in the bigger (64 bit) format and work out the final result directly from there.
 - Use asserts and do other verification checks rigorously, especially in debug builds.
 - Compare to results of same calculations done in floating points.
Tips For Making A Fixed Point Library

- There's built-in support... if you code in Ada.
- C/C++ alternatives:
 - Code it all in-line, using normal integers
 - Use helper macros (conversions, operations)
 - Create a real number class with overloaded operators
 - Allows to switch easily between floats and fixed points
Tips For Making A Fixed Point Library

- Create debug version of the real number class
 - Perform both fixed point and floating point calculations in parallel
 - Detect overflow & underflow conditions
 - Detect drifting
 - Error/warning asserts and checks can be made run-time toggable

- If you work on J2ME, it's best to inline all calculations yourself for performance.
Other Tidbits

• Nobody noticed that I changed the underlying physics engine from floating point to fixed point in latest version of Pogo Sticker.

• You can do fixed point (integer) abs() without branches. [And05, War02]

 – For 32-bit ints:
 • result = (v ^ (v >> 31)) − (v >> 31)

 – Ridiculously that's patented. But that's not the only way, check the references.
Other Tidbits

- 32-bit signed 0x80000000 (highest bit) is special
 - int x; if (x < 0) x = -x;
 Doesn't work as expected if x==0x80000000! X will still be 0x80000000 (-2147483648).
 - For the above example, solution is to cast result to unsigned int as you know it will not be negative.
References

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eri05</td>
<td>Ericson, C., Numerical Robustness for Geometric Calculations (aka EPSILON is NOT 0.00001!), GDC Proceedings, 2005. Also available from http://realtimecollisiondetection.net/pubs/.</td>
</tr>
</tbody>
</table>
Thank You!

URL for these slides:
https://iki.fi/jetro/2006/08/07/neglected-art-of-fixed-point-arithmetic/

Fill out this form if you’re interested in more information about Fixed Point Math:
https://docs.google.com/forms/d/e/1FAIpQLScZ56aEt7oJED-kDFFlaUHJZ6FLy3AZ520P9gHYMv8OAtIsVg/viewform

• Short URL: http://j.mp/morefixedpoint