The neglected art of
Fixed Point arithmetic

Contents

* Motivation

* |ntroduction

* Typically needed functions

* Caveats and tricks

* Tips for making a fixed point library

Motivation

* Man sent himself to moon, and space probes
even beyond that. Do you think the hardware
used to accomplish those feats had fancy FPU
to do all the calculations?

* They used RCA 1802.

- Processing power equals roughly 6502 or 6510,
used in Apple Il and Commodore 64.

- 0&1

#

(23 4*-5

Motivation

* S50 why am | talking about this?

- Well, at least it's COOL, in retro-way:
This is how demo & game coders did their 3D stuff
15 years ago and made some pretty cool stuff even
with the minuscule CPU power.

* But does that matter anymore - except if you
are going to take part in the old school demo
competition with some retro stuff?

Motivation

* There's still plenty of platforms where using
only fixed point (integer) calculations is still
very relevant.

- Mobile devices (Typical: ARM CPU, no FPU)

* Almost all mobile phones (J2ZME or native code)
* Handheld consoles (Gameboy, Nintendo DS)

— DSP Programming
* There's both fixed & floating point DSPs

* (((
- 8

B4 06

(((

94

0 (

Introduction

* Basics

* Notation

* Range and precision

* Conversion

* Basic operations: + - * /

Introduction:
Basics

* What are the fixed point numbers in
“layman’s” terms?

- Scale all real numbers by a constant factor, such
as 65536, round to nearest integer and and store
the numbers as integers.

- This allows you to represent an evenly distributed
subset of real numbers roughly from -32768 to
32767 (with 32-bit signed integers and factor of
65536).

Introduction:
Basics

* More exactly, you are dividing your range of
values to two parts - the integer part and
fractional part.

271 20 2° 20 2° 22 2" 2°
128 64 32 16 8 4 2 1

8-bit example: V
2° 22 2V 2° 21 22 27 2¢
8 4 2 1 .1/2 1/4 1/8 1/16

;

That's the “fixed point!”

Introduction:
Notation

e Notations:
- M.N, e.g. 16.16
- QN (Q factor), e.g. Q16

* M is number of integer bits and N is number of
fractional bits.

Introduction:
Range and precision

* Range: defined by the integer (upper) part.
- 16.16 (signed): range is [-32768, 32767]

* Precision: smallest difference between two
successive numbers is 1/2".

- 16.16: 1/65536 (~0.000015258789)

4.4
2° 22 2" 2° 21 2% 2° 27
8-bit example: - Range: [-8, 7]
8 4 2 1 .1/21/4 1/81/16 (if signed)
Precision: 1/16

(0.0625)

Introduction:
Conversion

* Conversion from real to fixed point number

- Multiply by 2" and round to nearest integer
e (int) R * (I1<<N) + ®>=0 ? 0.5 : -0.5))

* Conversion from fixed point to real number

- Cast to real and divide by 2"
e (float)F / (1<)

* Conversion from/to integers (lossless)

- Shift N bits up or down (scaling by 2")
*F = I<<N, I = F>>N

Introduction:
Basic operations

* Addition (+) and subtraction (-)
- Same as adding and subtracting integers
* Multiplication (a * b)
- Multiply as integers and divide result by 2".

o Ll K L\ 1N
INY)

- That overflows very easily, as both a and b are
fixed point numbers!

 If both a and b are 2.0 (131072) as 16.16 fixed point
(a * b) == 17179869184 - 32 bits isn't enough!

(a * b) 2M:2N =J2N>

-6 N
(, 079 $*(%*
, *-9
0"(0" =J0™> (
e (int) (((INTe6d)a * INT64
(INT64)b) >> N) — ./ inté6d4

O// signed long long
long

Introduction:
Basic operations
* Division (a / b)
- Multiply a by 2" and divide by b (as integers).

o —{(—{(= AL VAN
\ \ &4 LN / N

- Again, intermediate result is prone to overflowing,
so the correct way for 16.16 is:

e (((INT64)a << N) / Db)

* See references for more detailed introductory
texts to fixed points. [vvBo4, stro4, WikF]

Typically Needed Functions

e Sine and cosine: sin (x), cos (x)
 Arcus tangent: atan2 (y, x)

e Square root: sgrt (x)

* Try CORDIC

Typically Needed Functions:
Sine and cosine

* Typical approach is to use a look-up table.

- Requires memory proportional to desired accuracy

- Requires some storage space to load table from or
time for pre-calculating table on startup

- Can interpolate between sampled values to gain
some more accuracy

* Note that it's enough to calculate /4 entries
to table, rest of the samples can be mirrored
and transformed from those.

Typically Needed Functions:
Sine and cosine

* |t's possible to find or construct less accurate
approximations for functions if you need
smaller code, memory usage or more speed.

- DSP coders have some quite nice tricks. [senos]

* See also [StrO4] for code example of how to
calculate sin, cos and tan algorithmically using
only a small arctan table.

Typically Needed Functions:
Square root

* Several fairly good iterative algorithms exist,
so | don't recommend using a look-up table.

* Can be as simple as trying out to multiply
integers by themselves until you find out the
closest one

- Or binary search version of the above

* Ken Turkowski's implementation is probably
the most often used one. [Tur94]

- For your convenience, code on the next slide.

Typically Needed Functions:
Square root

/* The definitions below yield 2 integer bits, 30 fractional bits */
#define FRACBITS 30 /* Must be even! */

#define ITERS (15 + (FRACBITS >> 1))

typedef long TFract;

TFract
FFracSqgrt (TFract x)
{

register unsigned long root, remHi, remLo, testDiv, count;

root = 0; /* Clear root */
remHi = 0; /* Clear high part of partial remainder */
remlLo = x; /* Get argument into low part of partial remainder */
count = ITERS; /* Load loop counter */
do {
remHi = (remHi << 2) | (remLo >> 30); remLo <<= 2; /* get 2 bits of arg */
root <<= 1; /* Get ready for the next bit in the root */
testDiv = (root << 1) + 1; /* Test radical */
if (remHi >= testDiv) {
remHi -= testDiv;

root += 1;

}

} while (count-- != 0);

return (root) ;

) [Tur94]

Typically Needed Functions:
Try CORDIC

* “COordinate Rotation Dlgital Computer”, an
algorithm to calculate hyperbolic and
trigonometric functions, from 1959. [wikc

- Only small look-up tables, bitshifts and additions.

* Use it run-time or to pre-calculate look-up
tables. (sin, cos, atan, ...)

 Accurate results
e Not the fastest solution

Caveats And Tricks

Back to range and precision
Watch out for division by zero
Exact results

Dealing with problems

a*b
= >
; (
a*a:
= >RSK$%$ 99 $UPES%S S 0" 1*$,
$*($* (

= >TSK&(&&- 99 &(&&-E&(&&~ S &(&&&&$*,

Caveats And Tricks:
Back to range and precision

* Similarly, make sure that a/b will stay in range
- When |b| > 1.0

* Check ranges so that result doesn't end up being 0.
- When |b| < 1.0

e b>1/(2""/a)

- |If max value for a is 32, b must be at least 0.000991821
(65/65536) so that a/b fits in 16.16 fixed point number:
32/0.000991821=~32263.

- If b would be one less (64/65536), then a/b will be 32768, not
fitting in [-32768, 32767] 16.16 fixed point value range.

Caveats And Tricks:
Watch out for division by zero

* Floating points have “Infinity Arithmetic”

- Even result of division by zero is defined, so you
simply get Inf as a result

* Easier to go unnoticed by mistake

* Fixed point (integer) division by zero leads to
interrupt or an exception is thrown

- Typically programs just crash at this

Caveats And Tricks:
Exact results

* Possible in some cases: modify division
involving formulas to keep numerator and
denumerator separate, and try to find out
final (exact) result by examining those,
without doing the division. See [Eri05] for
example.

* Generally speaking, it's rare and hard to take
advantage of this.

Caveats And Tricks:
Dealing with problems

* When troubled by overflows, underflows or
accuracy problems

- Try keeping the intermediate result(s) in the
bigger (64 bit) format and work out the final result
directly from there.

- Use asserts and do other verification checks
rigorously, especially in debug builds.

- Compare to results of same calculations done in
floating points.

Tips For Making
A Fixed Point Library

* There's built-in support... if you code in Ada.
 C/C++ alternatives:

- Code it all in-line, using normal integers
- Use helper macros (conversions, operations)

- Create a real number class with overloaded
operators

* Allows to switch easily between floats and fixed points

Tips For Making
A Fixed Point Library

* Create debug version of the real number class

- Perform both fixed point and floating point
calculations in parallel
* Detect overflow & underflow conditions
* Detect drifting

* Error/warning asserts and checks can be made run-time
togglable

* |f you work on J2ME, it's best to inline all
calculations yourself for performance.

Other Tidbits

Nobody noticed that | changed the underlying
physics engine from floating point to fixed
point in latest version of Pogo Sticker.

You can do fixed point (integer) abs() without
branches. [Andos, war02]

For 32-bit ints:
result = (v ©~ (v >> 31)) — (v >> 31)

Ridiculously that's patented. But that's not the only
way, check the references.

Other Tidbits

e 32-bit sighed 0x80000000 (highest bit) is
special

- 1int x; 1f (x < 0) x = =-x;
Doesn't work as expected if x==0x80000000!
X will still be 0x80000000 (-2147483648).

- For the above example, solution is to cast result to
unsigned int as you know it will not be negative.

4 &

A&

<DE

> 2&

/ 12"

22

<D/

%

References

1 (555) 6)) (18 (Y (9 8 1 7/ &) t4 9) ;)<<) Computation: Aerospace
Computers in Aircraft, Missiles and Spacecraft 1 8 () & $° M2 & >)9) 9 ?))
Mariner 4 Timing and Sequencing)) & @8 "2 %)

- .) =) A 1) —) Essential Mathematics for Games & Interactive Applications — A Programmer's Guide
— 4 1 &)
—) A Fixed Point Math Primer, @' O BC O ; ! / * 8 * &)
'()5D1!) (BD(EF ' G 8:EF ! 8 8 <D!)
* D 5D 4) Fixed Point Square Root 11 *8 8 1 >)2 "228) 1 Graphics Gems V
) <) # 8 8 ""22%) 1(555) ! 8) ()
/!) Fast Approximation to the Arctangent O 1 8 O H 8 8 22"

1(555) ! 8) ()

1 ((555) ! 8 (8 1) (8 ((F) :) DSP Trick: Fixed-Point Atan2 With Self
Normalization ! g8 1) 1 5 LI "'222)

I (555) 8)8 (1 8 ((A 8) Fun with Sinusoids)

'()5D1!) (BD(/@ ;#/ - /@ i/ 8 <bD! 18 1 8 /@ ;#/ A !

J / ! 4 1 (@ 1))) (6 g (8 868) ¥

C 8 /) Numerical Robustness for Geometric Calculations (aka EPSILON is NOT 0.00001!) O;/ 8
7 N 8 g8) (r 0

r(Y 8) T) (8D) :) C) Bit Twiddling Hacks)
< 9)) Hacker's Delight <)

Thank You!

URL for these slides:

https://iki.fi/jetro/2006/08/07/neglected-art-of-fixed-point-arithmetic/

Fill out this form if you’re interested in
more information about Fixed Point Math:

https://docs.google.com/forms/d/e/1FAIpQLScZ56aEt70JED-kDFFlaUHJZ6FLYy3AZ520P9gHYMv80ALtIsVg/viewform

Short URL: http://j.mp/morefixedpoint

