

The neglected art of
Fixed Point arithmetic

Jetro Lauha
Seminar Presentation

Assembly 2006, 3rd - 6th August 2006
(Revised: September 13, 2006)

2019-08, small note:
Many of the statements in this presentation do not hold true for “today’s hardware”.

(floating point support is now common in mobile and even IoT CPUs).

Contents

● Motivation

● Introduction

● Typically needed functions

● Caveats and tricks

● Tips for making a fixed point library

Motivation

● Man sent himself to moon, and space probes
even beyond that. Do you think the hardware
used to accomplish those feats had fancy FPU
to do all the calculations?

● They used RCA 1802.

– Processing power equals roughly 6502 or 6510,

used in Apple II and Commodore 64.

Motivation

● But it's a lot of work.
– 30% of the Apollo software development effort was

spent on scaling. [KrL64]

● So they eventually switched to floating point when
hardware got better.

Motivation

● So why am I talking about this?

– Well, at least it's COOL, in retro-way:

This is how demo & game coders did their 3D stuff

15 years ago and made some pretty cool stuff even

with the minuscule CPU power.

● But does that matter anymore – except if you
are going to take part in the old school demo
competition with some retro stuff?

Motivation

● There's still plenty of platforms where using
only fixed point (integer) calculations is still
very relevant.

– Mobile devices (Typical: ARM CPU, no FPU)

● Almost all mobile phones (J2ME or native code)

● Handheld consoles (Gameboy, Nintendo DS)

– DSP Programming

● There's both fixed & floating point DSPs

Motivation

● ...continued...

– OpenGL ES is the standard for embedded 3D.

● Profiles for both fixed point and floating point, but

often only Common-Lite profile is provided (no floating

point).

– Fixed point is often still a bit faster on desktop

than floating point.

– Stable calculations across platforms

● Floating point calculations are prone to slight

differences based on compiler, CPU and other

dependencies.

Introduction

● Basics

● Notation

● Range and precision

● Conversion

● Basic operations: + - * /

Introduction:
Basics

● What are the fixed point numbers in
“layman's” terms?

– Scale all real numbers by a constant factor, such

as 65536, round to nearest integer and and store

the numbers as integers.

– This allows you to represent an evenly distributed

subset of real numbers roughly from -32768 to

32767 (with 32-bit signed integers and factor of

65536).

Introduction:
Basics

● More exactly, you are dividing your range of
values to two parts – the integer part and
fractional part.

2
7

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

2
7

128 64 32 16 8 4 2 1

2
7

2
-1

2
-2

2
-3

2
-4

2
3

2
2

2
1

2
0

2
7

1/2 1/4 1/8 1/168 4 2 1 .

.

8-bit example:

That's the “fixed point!”

Introduction:
Notation

● Notations:

– M.N, e.g. 16.16

– QN (Q factor), e.g. Q16

● M is number of integer bits and N is number of
fractional bits.

Introduction:
Range and precision

● Range: defined by the integer (upper) part.

– 16.16 (signed): range is [-32768, 32767]

● Precision: smallest difference between two
successive numbers is 1/2N.

– 16.16: 1/65536 (~0.000015258789)

2
7
2
-1
2
-2
2
-3
2
-4

2
3
2
2
2
1
2
0

2
7

1/2 1/4 1/8 1/168 4 2 1 .

.
4.4
Range: [-8, 7]

(if signed)
Precision: 1/16

(0.0625)

8-bit example:

Introduction:
Conversion

● Conversion from real to fixed point number

– Multiply by 2N and round to nearest integer

● (int)(R * (1<<N) + (R>=0 ? 0.5 : -0.5))

● Conversion from fixed point to real number

– Cast to real and divide by 2N

● (float)F / (1<<N)

● Conversion from/to integers (lossless)

– Shift N bits up or down (scaling by 2N)

● F = I<<N , I = F>>N

Introduction:
Basic operations

● Addition (+) and subtraction (-)

– Same as adding and subtracting integers

● Multiplication (a * b)

– Multiply as integers and divide result by 2N.

● ((a * b) >> N)

– That overflows very easily, as both a and b are

fixed point numbers!

● If both a and b are 2.0 (131072) as 16.16 fixed point

(a * b) == 17179869184 - 32 bits isn't enough!

Introduction:
Basic operations

● For multiplication, the intermediate result
from (a * b) is in 2M:2N (Q2N) format
– Store intermediate value in double sized integer

format. That is, for 32-bit 16.16 fixed point
numbers, you need a 64-bit integer to store the
32.32 (Q32) intermediate result.

● (int)(((INT64)a *
 (INT64)b) >> N)

INT64

MSVC: __int64
GCC: signed long long
Java: long

Introduction:
Basic operations

● Division (a / b)

– Multiply a by 2N and divide by b (as integers).

● ((a << N) / b)

– Again, intermediate result is prone to overflowing,

so the correct way for 16.16 is:

● (((INT64)a << N) / b)

● See references for more detailed introductory
texts to fixed points. [VVB04, Str04, WikF]

Typically Needed Functions

● Sine and cosine: sin(x), cos(x)

● Arcus tangent: atan2(y, x)

● Square root: sqrt(x)

● Try CORDIC

Typically Needed Functions:
Sine and cosine

● Typical approach is to use a look-up table.

– Requires memory proportional to desired accuracy

– Requires some storage space to load table from or

time for pre-calculating table on startup

– Can interpolate between sampled values to gain

some more accuracy

● Note that it's enough to calculate π/4 entries
to table, rest of the samples can be mirrored
and transformed from those.

Typically Needed Functions:
Sine and cosine

● It's possible to find or construct less accurate
approximations for functions if you need
smaller code, memory usage or more speed.

– DSP coders have some quite nice tricks. [Ben06]

● See also [Str04] for code example of how to
calculate sin, cos and tan algorithmically using
only a small arctan table.

Typically Needed Functions:
Square root

● Several fairly good iterative algorithms exist,
so I don't recommend using a look-up table.

● Can be as simple as trying out to multiply
integers by themselves until you find out the
closest one

– Or binary search version of the above

● Ken Turkowski's implementation is probably
the most often used one. [Tur94]

– For your convenience, code on the next slide.

Typically Needed Functions:
Square root

/* The definitions below yield 2 integer bits, 30 fractional bits */
#define FRACBITS 30 /* Must be even! */
#define ITERS (15 + (FRACBITS >> 1))
typedef long TFract;

TFract
FFracSqrt(TFract x)
{
 register unsigned long root, remHi, remLo, testDiv, count;

 root = 0; /* Clear root */
 remHi = 0; /* Clear high part of partial remainder */
 remLo = x; /* Get argument into low part of partial remainder */
 count = ITERS; /* Load loop counter */

 do {
 remHi = (remHi << 2) | (remLo >> 30); remLo <<= 2; /* get 2 bits of arg */
 root <<= 1; /* Get ready for the next bit in the root */
 testDiv = (root << 1) + 1; /* Test radical */
 if (remHi >= testDiv) {
 remHi -= testDiv;
 root += 1;
 }
 } while (count-- != 0);

 return(root);
} [Tur94]

Typically Needed Functions:
Arcus tangent

● You can try some look-up table tricks, again.
● If fast and rough approximation is enough,

implementation can be very simple. [Cap91]

● For accurate results, try using CORDIC
(covered next).

● For my favorite approximation (for the time
being), check Jim Shima's DSP Trick: Fixed-
Point Atan2 With Self Normalization. [Shi99]

Typically Needed Functions:
Try CORDIC

● “COordinate Rotation DIgital Computer”, an
algorithm to calculate hyperbolic and
trigonometric functions, from 1959. [WikC]

– Only small look-up tables, bitshifts and additions.

● Use it run-time or to pre-calculate look-up
tables. (sin, cos, atan, ...)

● Accurate results

● Not the fastest solution

Caveats And Tricks

● Back to range and precision

● Watch out for division by zero

● Exact results

● Dealing with problems

Caveats And Tricks:
Back to range and precision

● When storing result of a*b to normal sized
fixed point (integer) value
– Possible range & precision for the original values is

much more limited than the normal to prevent
overflow & underflow.

– For storing a*a:
● abs(a)<=~181 -- 181*181 = 32761, barely fits in signed

16.16 fixed point number.
● abs(a)>=~0.004 -- 0.004*0.004 = 0.000016, truncated

down to 1/65536.

Caveats And Tricks:
Back to range and precision

● Similarly, make sure that a/b will stay in range

– When |b| > 1.0

● Check ranges so that result doesn't end up being 0.

– When |b| < 1.0

● b>1/(2M-1/a)

– If max value for a is 32, b must be at least 0.000991821

(65/65536) so that a/b fits in 16.16 fixed point number:

32/0.000991821=~32263.

– If b would be one less (64/65536), then a/b will be 32768, not

fitting in [-32768, 32767] 16.16 fixed point value range.

Caveats And Tricks:
Watch out for division by zero

● Floating points have “Infinity Arithmetic”

– Even result of division by zero is defined, so you

simply get Inf as a result

● Easier to go unnoticed by mistake

● Fixed point (integer) division by zero leads to
interrupt or an exception is thrown

– Typically programs just crash at this

Caveats And Tricks:
Exact results

● Possible in some cases: modify division
involving formulas to keep numerator and
denumerator separate, and try to find out
final (exact) result by examining those,
without doing the division. See [Eri05] for
example.

● Generally speaking, it's rare and hard to take
advantage of this.

Caveats And Tricks:
Dealing with problems

● When troubled by overflows, underflows or
accuracy problems

– Try keeping the intermediate result(s) in the

bigger (64 bit) format and work out the final result

directly from there.

– Use asserts and do other verification checks

rigorously, especially in debug builds.

– Compare to results of same calculations done in

floating points.

Tips For Making
A Fixed Point Library

● There's built-in support... if you code in Ada.

● C/C++ alternatives:

– Code it all in-line, using normal integers

– Use helper macros (conversions, operations)

– Create a real number class with overloaded

operators

● Allows to switch easily between floats and fixed points

Tips For Making
A Fixed Point Library

● Create debug version of the real number class

– Perform both fixed point and floating point

calculations in parallel

● Detect overflow & underflow conditions

● Detect drifting

● Error/warning asserts and checks can be made run-time

togglable

● If you work on J2ME, it's best to inline all
calculations yourself for performance.

Other Tidbits

● Nobody noticed that I changed the underlying
physics engine from floating point to fixed
point in latest version of Pogo Sticker.

● You can do fixed point (integer) abs() without
branches. [And05, War02]

– For 32-bit ints:

● result = (v ^ (v >> 31)) – (v >> 31)

– Ridiculously that's patented. But that's not the only

way, check the references.

Other Tidbits

● 32-bit signed 0x80000000 (highest bit) is
special

– int x; if (x < 0) x = -x;

Doesn't work as expected if x==0x80000000!

X will still be 0x80000000 (-2147483648).

– For the above example, solution is to cast result to

unsigned int as you know it will not be negative.

References

KrL64 http://www.hq.nasa.gov/office/pao/History/computers/Ch4-2.html – Kreide, H., Lambert, D.W., Computation: Aerospace
Computers in Aircraft, Missiles and Spacecraft, Space/Aeronaut., 42, 78 (1964); see also N.H. Herman and U.S. Lingon,
Mariner 4 Timing and Sequencing, Astronaut. Aeronaut., 43 (October 1965).

VVB04 Van Verth, J. M., Bishop, L. M., Essential Mathematics for Games & Interactive Applications – A Programmer's Guide,
Morgan Kaufmann, 2004.

Str04 Street, M., A Fixed Point Math Primer, OpenGL® ES Game Development, Course Technology PTR, 2004.

WikF http://en.wikipedia.org/wiki/Fixed-point_arithmetic – Fixed-point arithmetic article in Wikipedia.

Tur94 Turkowski, K., Fixed Point Square Root, Apple Technical Report No. 96, 1994. Also appears in Graphics Gems V, Paeth,
A. W. (editor), Academic Press, 1995. See http://www.graphicsgems.org/.

Cap91 Capelli, R., Fast Approximation to the Arctangent, Graphics Gems II, Academic Press, 1991. See
http://www.graphicsgems.org/.

Shi99 http://www.dspguru.com/comp.dsp/tricks/alg/fxdatan2.htm – Shima, J., DSP Trick: Fixed-Point Atan2 With Self
Normalization, post in comp.dsp newsgroup, Apr 23, 1999.

Ben06 http://www.audiomulch.com/~rossb/code/sinusoids/ – Bencina, R., Fun with Sinusoids, 2006.

WikC http://en.wikipedia.org/wiki/CORDIC – CORDIC article in Wikipedia, see especially the referenced "CORDIC Bibliography
Site" and the C implementation by Peter Knoppers (http://people.csail.mit.edu/hqm/imode/fplib/cordic_code.html).

Eri05 Ericson, C., Numerical Robustness for Geometric Calculations (aka EPSILON is NOT 0.00001!), GDC Proceedings, 2005.
Also available from http://realtimecollisiondetection.net/pubs/.

And05 http://graphics.stanford.edu/~seander/bithacks.html – Anderson, S. E., Bit Twiddling Hacks.

War02 Warren, H. S., Hacker's Delight, Addison-Wesley, 2002.

Thank You!

URL for these slides:
https://iki.fi/jetro/2006/08/07/neglected-art-of-fixed-point-arithmetic/

Fill out this form if you’re interested in

more information about Fixed Point Math:
https://docs.google.com/forms/d/e/1FAIpQLScZ56aEt7oJED-kDFFlaUHJZ6FLy3AZ520P9gHYMv8OAtIsVg/viewform

● Short URL: http://j.mp/morefixedpoint

