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2019-08, small note:
Many of the statements in this presentation do not hold true for “today’s hardware”.

(floating point support is now common in mobile and even IoT CPUs).
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Motivation

● Man sent himself to moon, and space probes 
even beyond that. Do you think the hardware 
used to accomplish those feats had fancy FPU 
to do all the calculations?

● They used RCA 1802.

– Processing power equals roughly 6502 or 6510, 

used in Apple II and Commodore 64.



  

Motivation

● But it's a lot of work.
– 30% of the Apollo software development effort was 

spent on scaling. [KrL64]

● So they eventually switched to floating point when 
hardware got better.



  

Motivation

● So why am I talking about this?

– Well, at least it's COOL, in retro-way:

This is how demo & game coders did their 3D stuff 

15 years ago and made some pretty cool stuff even 

with the minuscule CPU power.

● But does that matter anymore – except if you 
are going to take part in the old school demo 
competition with some retro stuff?



  

Motivation

● There's still plenty of platforms where using 
only fixed point (integer) calculations is still 
very relevant.

– Mobile devices (Typical: ARM CPU, no FPU)

● Almost all mobile phones (J2ME or native code)

● Handheld consoles (Gameboy, Nintendo DS)

– DSP Programming

● There's both fixed & floating point DSPs



  

Motivation

● ...continued...

– OpenGL ES is the standard for embedded 3D.

● Profiles for both fixed point and floating point, but 

often only Common-Lite profile is provided (no floating 

point).

– Fixed point is often still a bit faster on desktop 

than floating point.

– Stable calculations across platforms

● Floating point calculations are prone to slight 

differences based on compiler, CPU and other 

dependencies.



  

Introduction

● Basics

● Notation

● Range and precision

● Conversion

● Basic operations: + - * /



  

Introduction:
Basics

● What are the fixed point numbers in 
“layman's” terms?

– Scale all real numbers by a constant factor, such 

as 65536, round to nearest integer and and store 

the numbers as integers.

– This allows you to represent an evenly distributed 

subset of real numbers roughly from -32768 to 

32767 (with 32-bit signed integers and factor of 

65536).



  

Introduction:
Basics

● More exactly, you are dividing your range of 
values to two parts – the integer part and 
fractional part.
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8-bit example:

That's the “fixed point!”



  

Introduction:
Notation

● Notations:

– M.N, e.g. 16.16

– QN (Q factor), e.g. Q16

● M is number of integer bits and N is number of 
fractional bits.



  

Introduction:
Range and precision

● Range: defined by the integer (upper) part.

– 16.16 (signed): range is [-32768, 32767]

● Precision: smallest difference between two 
successive numbers is 1/2N.

– 16.16: 1/65536 (~0.000015258789)
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(if signed)
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8-bit example:



  

Introduction:
Conversion

● Conversion from real to fixed point number

– Multiply by 2N and round to nearest integer

● (int)(R * (1<<N) + (R>=0 ? 0.5 : -0.5))

● Conversion from fixed point to real number

– Cast to real and divide by 2N

● (float)F / (1<<N)

● Conversion from/to integers (lossless)

– Shift N bits up or down (scaling by 2N)

● F = I<<N ,    I = F>>N



  

Introduction:
Basic operations

● Addition (+) and subtraction (-)

– Same as adding and subtracting integers

● Multiplication (a * b)

– Multiply as integers and divide result by 2N.

● ((a * b) >> N)

– That overflows very easily, as both a and b are 

fixed point numbers!

● If both a and b are 2.0 (131072) as 16.16 fixed point

(a * b) == 17179869184   - 32 bits isn't enough!



  

Introduction:
Basic operations

● For multiplication, the intermediate result 
from (a * b) is in 2M:2N (Q2N) format
– Store intermediate value in double sized integer 

format. That is, for 32-bit 16.16 fixed point 
numbers, you need a 64-bit integer to store the 
32.32 (Q32) intermediate result.

● (int)(((INT64)a *
       (INT64)b) >> N)

INT64

MSVC: __int64
GCC: signed long long
Java: long



  

Introduction:
Basic operations

● Division (a / b)

– Multiply a by 2N and divide by b (as integers).

● ((a << N) / b)

– Again, intermediate result is prone to overflowing, 

so the correct way for 16.16 is:

● (((INT64)a << N) / b)

● See references for more detailed introductory 
texts to fixed points. [VVB04, Str04, WikF]



  

Typically Needed Functions

● Sine and cosine: sin(x), cos(x)

● Arcus tangent: atan2(y, x)

● Square root: sqrt(x)

● Try CORDIC



  

Typically Needed Functions:
Sine and cosine

● Typical approach is to use a look-up table.

– Requires memory proportional to desired accuracy

– Requires some storage space to load table from or 

time for pre-calculating table on startup

– Can interpolate between sampled values to gain 

some more accuracy

● Note that it's enough to calculate π/4 entries 
to table, rest of the samples can be mirrored 
and transformed from those.



  

Typically Needed Functions:
Sine and cosine

● It's possible to find or construct less accurate 
approximations for functions if you need 
smaller code, memory usage or more speed.

– DSP coders have some quite nice tricks. [Ben06]

● See also [Str04] for code example of how to 
calculate sin, cos and tan algorithmically using 
only a small arctan table.



  

Typically Needed Functions:
Square root

● Several fairly good iterative algorithms exist, 
so I don't recommend using a look-up table.

● Can be as simple as trying out to multiply 
integers by themselves until you find out the 
closest one

– Or binary search version of the above

● Ken Turkowski's implementation is probably 
the most often used one. [Tur94]

– For your convenience, code on the next slide.



  

Typically Needed Functions:
Square root

/* The definitions below yield 2 integer bits, 30 fractional bits */
#define FRACBITS 30    /* Must be even! */
#define ITERS    (15 + (FRACBITS >> 1))
typedef long TFract;

TFract
FFracSqrt(TFract x)
{
    register unsigned long root, remHi, remLo, testDiv, count;

    root = 0;         /* Clear root */
    remHi = 0;        /* Clear high part of partial remainder */
    remLo = x;        /* Get argument into low part of partial remainder */
    count = ITERS;    /* Load loop counter */

    do {
        remHi = (remHi << 2) | (remLo >> 30); remLo <<= 2;  /* get 2 bits of arg */
        root <<= 1;   /* Get ready for the next bit in the root */
        testDiv = (root << 1) + 1;    /* Test radical */
        if (remHi >= testDiv) {
            remHi -= testDiv;
            root += 1;
        }
    } while (count-- != 0);

    return(root);
} [Tur94]



  

Typically Needed Functions:
Arcus tangent

● You can try some look-up table tricks, again.
● If fast and rough approximation is enough, 

implementation can be very simple. [Cap91]

● For accurate results, try using CORDIC 
(covered next).

● For my favorite approximation (for the time 
being), check Jim Shima's DSP Trick: Fixed-
Point Atan2 With Self Normalization. [Shi99]



  

Typically Needed Functions:
Try CORDIC

● “COordinate Rotation DIgital Computer”, an 
algorithm to calculate hyperbolic and 
trigonometric functions, from 1959. [WikC]

– Only small look-up tables, bitshifts and additions.

● Use it run-time or to pre-calculate look-up 
tables. (sin, cos, atan, ...)

● Accurate results

● Not the fastest solution



  

Caveats And Tricks

● Back to range and precision

● Watch out for division by zero

● Exact results

● Dealing with problems



  

Caveats And Tricks:
Back to range and precision

● When storing result of a*b to normal sized 
fixed point (integer) value
– Possible range & precision for the original values is 

much more limited than the normal to prevent 
overflow & underflow.

– For storing a*a:
● abs(a)<=~181 -- 181*181 = 32761, barely fits in signed 

16.16 fixed point number.
● abs(a)>=~0.004 -- 0.004*0.004 = 0.000016, truncated 

down to 1/65536.



  

Caveats And Tricks:
Back to range and precision

● Similarly, make sure that a/b will stay in range

– When |b| > 1.0

● Check ranges so that result doesn't end up being 0.

– When |b| < 1.0

● b>1/(2M-1/a)

– If max value for a is 32, b must be at least 0.000991821 

(65/65536) so that a/b fits in 16.16 fixed point number:

32/0.000991821=~32263.

– If b would be one less (64/65536), then a/b will be 32768, not 

fitting in [-32768, 32767] 16.16 fixed point value range.



  

Caveats And Tricks:
Watch out for division by zero

● Floating points have “Infinity Arithmetic”

– Even result of division by zero is defined, so you 

simply get Inf as a result

● Easier to go unnoticed by mistake

● Fixed point (integer) division by zero leads to 
interrupt or an exception is thrown

– Typically programs just crash at this



  

Caveats And Tricks:
Exact results

● Possible in some cases: modify division 
involving formulas to keep numerator and 
denumerator separate, and try to find out 
final (exact) result by examining those, 
without doing the division. See [Eri05] for 
example.

● Generally speaking, it's rare and hard to take 
advantage of this.



  

Caveats And Tricks:
Dealing with problems

● When troubled by overflows, underflows or 
accuracy problems

– Try keeping the intermediate result(s) in the 

bigger (64 bit) format and work out the final result 

directly from there.

– Use asserts and do other verification checks 

rigorously, especially in debug builds.

– Compare to results of same calculations done in 

floating points.



  

Tips For Making
A Fixed Point Library

● There's built-in support... if you code in Ada.

● C/C++ alternatives:

– Code it all in-line, using normal integers

– Use helper macros (conversions, operations)

– Create a real number class with overloaded 

operators

● Allows to switch easily between floats and fixed points



  

Tips For Making
A Fixed Point Library

● Create debug version of the real number class

– Perform both fixed point and floating point 

calculations in parallel

● Detect overflow & underflow conditions

● Detect drifting

● Error/warning asserts and checks can be made run-time 

togglable 

● If you work on J2ME, it's best to inline all 
calculations yourself for performance.



  

Other Tidbits

● Nobody noticed that I changed the underlying 
physics engine from floating point to fixed 
point in latest version of Pogo Sticker.

● You can do fixed point (integer) abs() without 
branches. [And05, War02]

– For 32-bit ints:

● result = (v ^ (v >> 31)) – (v >> 31)

– Ridiculously that's patented. But that's not the only 

way, check the references. 



  

Other Tidbits

● 32-bit signed 0x80000000 (highest bit) is 
special

– int x; if (x < 0) x = -x;

Doesn't work as expected if x==0x80000000!

X will still be 0x80000000 (-2147483648).

– For the above example, solution is to cast result to 

unsigned int as you know it will not be negative.
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Thank You!

URL for these slides:
https://iki.fi/jetro/2006/08/07/neglected-art-of-fixed-point-arithmetic/

Fill out this form if you’re interested in

more information about Fixed Point Math:
https://docs.google.com/forms/d/e/1FAIpQLScZ56aEt7oJED-kDFFlaUHJZ6FLy3AZ520P9gHYMv8OAtIsVg/viewform

● Short URL: http://j.mp/morefixedpoint


